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Abstract

Recently proved theorems concerning weak convergence of non~Markovian

processes to diffusions, together with an averaging and a stability method, are

applied to two (learning or adaptive) processes of current interest: (1) an
automata model for route selection in telephone traffic routing, (2) an
adaptive quantizer for use in the transmission of random signals in communica-
tion theory. The models are chosen because they are prototypes of a large
class to which the methods can be applied. The technique of application of
the basic theorems to such processes is developed. Suitably interpolated and
normalized {learning or adaptive? processes converge weakly to a diffusion,

as the %tlearning or adaptation? rate goes to zero. For small learning rate,

the qualitative properties {(e.g., asymptotic (large-time) variances and para-

metric dependence] of the processes can be determined from the properties of
the limit.
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I. INTRODUCTION

References (7}, {1] develop a useful method to study the asymptotic proper-

ties as € » 0 and ne < T < = for any real T of solutions to stechastic difforence .

equations of the form

€ € £ € S X € r
(1.1) Yo =Y +eh (Y ,E0) + /e 9. (Y ,E0) + ole), Y ER,

. . €
where the distributions of the random sequence {£;] might depend on the {Yn}.
Such equations occur frequently in applications. The methods in [1) also work
when € is replaced by a sequence tn + 0 as n » » from which asymptotic proper-

ties (rates of convergence) of various forms of stochastic approximations can

be obtained.

The emphasis in [1] (an application of [7)) concerned the case where the
hC and g, are smooth, and no details for the non-smooth case or its applications
were given, nor was the asymptotic case where n + «», then € + 0 treated. This
is a deficiency, since in many applications in communication, control and
automata theory, the h€ and 9. might simply be indicator functions and the
noise ((n} depend on {Yz}, and the asymptotic properties (as n =+ «, then € + 0)
desired. Here, we apply the basic results of [7] to two such problems. The
two problems have-current technological importance in their own right and each
has been the subject of a great deal of work. Our method often yields a complete
analysis of the asymptotic properties under realistic conditions. The two
problems are typical of a wice class, and they illustrat: the power and
applicability of the general technique, as well as the method of applying it
to concrete problems. 1In a sense the method is an extension with more complex
memory structure of the sort of "slow learning"” results obtained by Norman (9],

and should have broad applications to the areas cited above.
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The basic type of result is the féllowing. Define Ye(-), t € [0,»), by

4

Y¢(0) = Yg and Y (t) = Yi on [ie,ie+e). Under appropriate conditions, §

Theorem 1 gives weak convergence of {v" ()} in Drlo,w) to a particular diffusion %

' process, as € *» 0. Now, let {nE} denote a sequence of integers tending to « %
as € + 0. For t > 0, define ?c(t) - Ya(t+en€). The tilde v~ always denotes a ?

shift by n. (discrete parameter) or €n_ (continuous parameter). By using %

Theorem 1 but starting {Yﬁ} at time n_ instead of at time 0, we will get a %

great deal of information on the asymptotic properties (large n, small €). é

The next section gives some background material from [7). Sections 1II to VI §

treat a learning automata approach to certain problems in adaptive routing of

| telephone calls {2]-{3]. The second problem, in Sections VII-VIII, concerns

S e Y

the asymptotic theory of an adaptive quantizer from communications applications

(41, 15].

Accession For
NTIS GRA&I
Lol TAB
Uizunounced

O e

T
& ‘




-3-

I1.

SOME BACKGROUND MATERIAL

o'[o,u) denotes the space of R'-valued functions on (0,») which are right~

i e 5
.

continuous and have left-hand limits, and is cndowed with the Skorokhod topology

A
[6]. _%B denotes the continuous functions on RY x {0,=) with compact support

A
and jfg's the subset whose mixed partial derivatives up to order a in t and 8

in the components of x are continuous. Let bi(°,~), aij(-,-), i,3 < r, be con- 4

tinuous functions on R® x {0,»). Let the operator

2

P 3
A = Z bi(x,t) x % { aiﬁ(x't) 3% 9%
i i i3 7 iy

A g, TR

be the infinitesimal operator of a diffusion process X(:). Assume that the

solution to the martingale problem (on DrIO,w)) of Strook and Varadhan (8]

corresponding to A has a unique non-explosive solution for each initial con-

dition.

Let bN(') denote a function with values in [0,1], equal to 1 on SN =

{x: |x|§N}, egual to zero in Rr-SN+l and with second derivatives bounded

uniformly in x and N. Define {yz'N, n>0} by

C'N
n+l

€,N

=Y €,N
n

n

€,N € €,N €
(2.1) Y + len (¥ '7,00) + /E§e<vn ) + ole) b (Y "),

Y;'N = Yg if |Y;] < N and is zero otherwise,

and define YC'N(-) analogously to Ye(-). For purely technical reasons, it is

€,N
n }

convenient to state the theorem in terms of (Y . Let AN be the infinitesimal

operator of a (not necessarily unique) diffusion process, denoted by x"('),

and suppose that its coefficients aN(-,-), bN('.‘) are continuous, bounded,




have compact support and equal a(:,:), b(-,:) in SN' Suppose that {YC'N(')I

converges weakly to some such x"(-) as ¢ + 0, for each N. Then [7) (Y (1}
converges weakly to X(°) as n + «», The following theorcm is a restatement of
Theorem 3 of (7] with o= v Theorem 2 of (7] provides a very convenient
method of proving tightness, and we will use it in the sequel. Let E;'N denote

. € . € .
expectation conditioned on {Yj'N,Jin, Lj' j<n}.

Theorem 1. Assume the conditions stated above on the solution to the martingale

problem on D" [0,») corresponding to operator A, and on A anda xM(). For_each

N, and f(*,-) € D, a dense set (sup norm) in %’0, let there be a sequence

(£5°N ) satisfying the following conditions: it is constant on each interval

[ne,ne+e), at ne it is measurable with respect to the o-algebra induced by

{Y§'N, j:p,gg, j<n} and

e,Nfe,

n N(ne+£)-f£'N(nc)| <o,

(2.2) sup Elfe'N(ne)I + sup % E|E
n,e n,e

and as € > 0 and for each t as nc > t,

(2.3) eleNtne) - £0v5 N ner| 0,
B;'Nfe'n(nc+e)-f€'N(nc) 3 N €N
(2.4) 4 - & s AN et N ne| s 0.
€ at n

Then, if {(¥$'N(-), €,>€>0} is tight in D'[0,=) for each N, where ¢, does not

depend on N and Y%(0) converges weakly to X{(0), {¥Y“(-)} converges weakly to

X(-), the unique solutioh to the martingale problem with initial condition X(0).




ITI. AN AUTOMATA PROBLEM - INTRODUCTION £

Narendra (2], [3) and others have studied the applicat ion of automata and 3
learning theory to problems in the routing of telephone calls through a multi- i
node network and have suggested a variety of interesting automata models for
this application. Under various assumptions (both exjylicit and implicit) they

have stated convergence results in a number of cases. Generally, their results I3

are applications of Norman's (9] results on slow learning. Here, we take one

e

of their models and show how to apply Theorem 1 to get a much more complete

asymptotic theory (large time) for small rate of change of the automata bchavior

! (¢), and under more realistic conditions. The case dealt with here can readily b
be generalized - as will be commented on below. The example illustrates the

power and usefulness of the approximation techniques used here. The algorithm

should be considered as a prototype. It might not be the best, but it well

serves to illustrate the method.

The problem formulation. Calls arrive at a transmitting or switching

terminal at random at discrete time instants n = 0,1,2,..., with P{one call ¢

arrives at nth instant} = u, y € (0,1), P{>1 call arrives at nth instant} = 0,

From the terminal, there are two possible routings to the destination, route
1 and route 2, the ith route having Ni independent lines - and can thus handle
up to Ni calls simultaneously. Let [n,n+l) denote the nth interval of time.
The duration of each call is a random variable with a geometric distribution:

P{call completed in the (n+l)st interval|uncompleted at end of nth interval,

route i used} = Ai’ Xi € (0,1). The members of the double sequence of the

interarrival times and call durations are mutually independent. It is possible

‘ to work with more general Markovian arrival processes, but we retain a simple

‘ structure in order to emphasize the main points. 1In practice, a more complex

. -
o d
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network would occur - and perhaps cycles might exist, and a vector routing
parameter would be used, one component per node. But the main idea is similar.
As in Theorem 4, the average dynamics are used for the stability analysis.
From that point on, the proof of the appropriate gencralization of Theorem 5

would be quite similar to the proof of Theorem 5.

The parameter € will be used for the rate of adjustment of the routing

- m— e

automaton - the device which selects the route. The adjustment mechanism will
be defined later. The routing automaton operates as follows. For each fixed

€, let {yi} denote a sequence of random variables - with values in [0,1]. 1In

e e s

order to have an unambiguous sequencing of events, suppose that the calls ter-

. . . . 1 .
minating in the nth interval actually terminate at time n+5, and arrivals and
i

route assignments are at the instants 0,1,2,... precisely. Thus the state at v

Ve v

time (n+l) does not include the calls just terminated or calls arriving at (n+l).

. 3 €, 1
Define the "route occupancy process"” Xn = (xn' X

s v

€,
n

of lines of route i occupied at time n+. Thus, x;'i

2), where xﬁ'l is the number
<N If a call arrives at
instant n+l, the automaton "flips a coin”, and chooses route 1 with probability

yi and chooses route 2 with probability (l-y;). If all lines of the chosen route

P I

i are occupied at instant (n+l) , then the call is switched to route j (j # i).

e oy <

If all lines of route j are also occupied at instant (n+1)", then the call is

rejected, and disappears from the system.
In a more realistic situation, the network would have many nodes - not
simply 2, and many possibilities of routing from node to node. The adjustment

algorithm might be different, but the problem would be handled in exactly the

same way. The object is to adjust the {y;} sequentially (based on the system
J behavior) so that some desired behavior occurs. 1In order to be specific, we

use the following "linear-rveward" algorithm [3). Let J:n denote the indicator
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of the event {call arrives at n+l, is assigned first to route i and is
accepted by route i}. For practical as well as theoretical purposes, it is

important to bound y; away from the points 0 and 1. Let 0 < Yo © Yy ¢ 1. We
Y
use the algorithm (3.1), where v denotes truncation at Yy or Y. and a{y) =
A :
l-y, B(y) = -y.

€ yu

€ ]
2n Yy

(3.1) Yre1

_ L€ €, € €
= [yn + ea(yn)Jln + eB(yn)J
Define ae(-), Bs(') such thata(-) = ae(') in [YE'Yu-CI and B(°) =

Be(-) in ly1+e,yu]‘and otherwise arc such that (3.2) is equivalent to (3.1):

€

(3.2) Yoe1

€ €, _€ €, .€
=y, * E[me(yn)Jln * Be(yn)JZn]'

We will study the asymptotics of the behavior of a centered and normalized
{y;} for small €. Part of the difficulty, which our scheme is well able to
handle, is due to the fact that {yi} is not Markovian. In the theoretical parts

of [2], [3], the problem is set up so that {yi} is Markovian.

Some definitions. If the choice probabilities y; are held fixed at some
value y for all n, then the route choice automaton still makes sense, although
there is no learning. For fixed route selection probability y € (0,1), let
(xn(y)} = HXi(y),X§(y». 0<n<=} denote the corresponding route occupancy
process. For the process {xn(y)}, the state space 2 = {(i,3): ijﬂl,j:pz} (whose

points are supposed ordercd in some fixed way) is a single ergodic class, and the




probability transition matrix, denoted by A'(y), has infinitely differentiable
components. With given initial condition lP{xo(y)=u}, a€ 2t define Pn(aly) =

P{Xn(y)=u} and the vector P (y) = {Pn(aly), a€ z}. Then
(3.3) Pn+1(y) = A(y)Pn(y).

The pair 1(x;,y;),n30} is a Markov process on 24 N lyv,yul and the marginal

transition probability P{X§+1=(k,l)lX;=(i,j). y;} is just the ((i,3)-column,

(k,%)-row) entry of X(yg). Define the vector Pi = {P;(a), a€ 2} where Pz(u) =

€ € €
P{Xn—a]yz, 2<n, xo}. Then

€ €, €
(3.4) Pn+l = A(yn)Pn.

Also, let P(y) = {P(aiy), a € 2} denote the unique invariant measure for {xn(y)),
with marginal defined by P (3|y) = L 2(3.x|y), 2liy) = el 51y, 3eng), and

similarly for route 2. Finally, define the transition probability P(a,j,ally) =

P{xj(y)=ullxo(y)=u} and write the marginal as
pi(a, . k|y) = P{X;(y)=k|xo(y)=a}.

Define E; to be the expectation conditioned on {x;, y:, 2<n}.

A relationship of (3.1) to a differential equation. Define v, = (l-Ai)

Note that

€.€ € €.l
(3.5a) EnJln = uynll - vll{xn Nl}],

i e

L S
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€ _€ € C,2
(3.5b) E J,. = u(l-yn) (1 \)21{xn Nz}].

For small €, it is reasonable to try to relatc¢ the behavior of {y;l to the r?
solution of (3.6), where F(y) is just Eloz(y)Jl + H(y)J€ ], but with {xc,yt} i
In 2n n'n
replaced by {Xn(y),y} and using the stationary measure. ,i
3
. 1 2

(3.6) Y = ualy)y[1-v P (N, [9) ] = u(1-y)B(y) [1-v,P (N, |y) ]
= py(l-y) [v.p2 (N, |y) - v.PRN |y) ] = Fy)
2 2 1 1 ‘ ‘_

' As y increases, Pl(Nlly) increases (and P2(N2ly) decreases) monotonically.
Thus, there is a unique point y € (0,1) such that ?(;) = 0. Also, ﬁ(y) >0

for y < y and %(y) <0 fory >y. We assume that y € (yl,yu) and we also make

the apparently unrestrictive assumption that ﬁy(;) # 0. We actually will study

the asymptotic properties of U; ke (yi-})//z, for large n and small €. 1In
particular, let n, be a sequence of integers tending to = as € + 0, and define

the processes vt () by k(o) = Ui and US(t) = U: +i O" [ie,ie+e). When the
0%(:) are dealt with, the {ne} wiil either be expiicitly defined or their
values will be unimportant. We show weak convergence of {G%()} to the Gauss-
Markov diffusion u(-) defined by (6.3). 1f n > fast enough as £ + 0, then

the limit u(-) is stationary. The general method can be applied to many other

problems in learning, automata and systems theory.




IV. SOME PRELIMINARY RESULTS

In this section, we prove some auxiliary results concerning uniform con-

vergence of Pn(y) and its derivatives to P(y) and its derivatives.

Theorem 2. For each y EE[yZ,yu], let A'(y) denote a Markov transition matrix

(continuwous in y) such that the corresponding Markov chain {Xn(y)} is ergodic

with invariant measure P(y). Then P(:) is also continuous and there is a 6§ > 0

such that the eigenvalues of A(y), except for the single eigenvalue unity,

are bounded in absolute value by 1-6 for all y & [yg,yu]. Pn(y) converges to

[ P(y) uniformly (and at a geometric rate) in y EE[yz,yu] and in Po(y).

Proof. The last sentence follows from the penultimate sentence. The

continuity of P(-) is a consequence of the uniqueness for each y, of the eigen-

vector of Aly) corresponding to the eigenvalue unity (the invariant measure).

Next, suppose that there is no such 6. Let A(y) be a qxq matrix and let {

Al(y), N Aq(y) denote the eigenvalues. Order them such that Al(y) z 1. )
Then there is a y and a sequence {yn}(:[yg.yu] such that as y = y, at least

one eigenvalue (other than the one which is always unity) approaches the unit

circle. 1In particular, suppose that the ordering is such that Ikz(yn)| + 1
and that (choosing a subsequence if necessary) the Ai(yn) converge to some ii
as n+wo, for i =1,...,9. The {ii} must be the eigenvalues of A(f). But

then A'(y) is not the transition matrix of an ergodic process, a contradiction.

Q.E.D.




Definition. Let L(y) denote the span of the eigenvectors and generalized
eigenvectors of A(y), except for the cigenvector which corresponds to the

eigenvalue unity.

Theorem 3. Assume the situation of Theorem 1, but let A(-) be continuously

differentiable on [yl'yu] (at the endpoints, take the left- or right-hand deri-

vatives, as appropriate); then so is P(-), and Py(y) is the unique solution in

Z(y) to the equation

4. P = A(y)P + A P .
(4.1) y(y) y) y(y) y(y) (y)

Furthermore, the derivative Pn

y(y) given by

[4

(4.2) (y) = A(y)Pn’y(y) + Ay(y)Pn(y)

Pn+1,y

converges geometrically to Py(y), uniformly in y € {Yl'yu] and in the initial

condition Po(y), if we set P y(y) = 0,

0,

If A(-) has continuous second derivatives on [yz,yu], then so do P(-) and

Pn(-), and Pyy(y) is the unique solution in I(y) to

. = P .
(4.3) Pyy(y) Aly) Yy(y) + 2Ay(y)Py(y) + Ayy(y)P(y)

Also, Pn,yy(y) converges geometrically to Pyy(y), uniformly in y€ [yl.yul

and in the initial conditions, if Po'y(y) = Po'yy(y) = 0,
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Proof. Fix y. Since (I-A(y))V = 0 for vV € ¥(y) implies that V = 0, in
order for (4.1) to have a unique solution in I(y) it is necessary and suffic-

ient that Ay(y)P(y) 4 A#(1-A'(y)), where # denotes the null space of the

matrix. _#(I-A'(y)) is the set of vectors Q such that A'(y)Q = Q. &Since there f
is a unique eigenvalue of value unity and since the row sums ofbA'(y) are all j
unity, the components of Q0 must all have the same value. Thus, thec necessary }
and sufficient condition reduces to Ay(y)P(y).L constant vectors. For any '
constant vector C = (c,c,...)", C'A(y) = C'. Thus, C'Ay(y) = 0 and hence ;
Ay(y)D.L constant vectors for any vector D. Consequently (4.1) has a unique %

solution 3}(y) in Z(y).

i Next, we show that E}(y) is the desired derivative. Write (for

Y € (y,,y ), otherwise § >0 or 8§ <0, as appropriate)
A(y+8)P(y+8) - A(y)P(y) = P(y+8) - P(y).

Thus,

(4.4)

[A(y+5;‘A(Y)] P(y+8) = (I-A(y))

[P(y+8)-P(y) ]
s

The left-hand side of (4.4) is uniformly bounded and is in IZ{y) for each § > O
(since (I-A(y))VE %(y) for any V) and it converges to Ay(y)P(y) as § - 0. When
considered as an operator from f(y) to IZ(y), [I-A(y)) has a bounded inverse.

Thus, as § » 0, [P(y+8)-P(y)]1/8 converges to Py(y), which must equal ;§(y). by

the uniqueness proved above.
We now turn to the convergence (4.2). By Theorem 1, Pn(y) converges geo-
"i metrically to P(y), uniformly in (Vp'Yu] and in Po(y). Also, since we use

' Po,y(y) -0 3
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n .
n-=1
(y) = 1A (y)Ay(y)Pi(y).

P
n+l,y j=0

- But A (y)Pi(y) is a bounded sequence in L(y), and as i + = it converges geo-

z

metrically and uniformly to Ay(y)P(y). Also A(y) is a contraction when acting

"

E in %(y), uniformly in y E}[yl,yu]. These facts imply the desired convergence

3 of Pn y(y). The limit must be a solutjon to (4.1).
3 ’

. The assertions concerning Pyy are proved in the same way and we omit the

Al X

details. 0.E.D.
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V. TIGHTNESS OF {U;, SMALL ¢, LARGE n}

By "€ small" and "n large"” we mean that there are CO > 0, Nr < «, guch
that the assertion holds for ¢ < €y D Z_NE. The actual value of Y will be
unimportant. Basic to the proof of weak convergence of {G' (+)) is the tightness

of (Uz, small €, large n}l.

Theorem 4. For each small € > 0, there is an NL < = guch that the doubly

indexed sequence {Ui, € small, n > Ne} is tight, where U; = (yi—;)//—.

Proof. Define V(y) = (y-§)2. We have

€ [
(5.1a) E-(y

€ €

3 2 _ 2 2 €, E . €,1_ 2,08 o€y o €,2_
(5.1b) En(yn+1—yn) =€ u[ae(yn)yn(l vll{xn _Nl}) + Be(yn)(l yn)(l vZI{xn N2})].

For small €,

€, € = €, € £, € €, € = €, .€ €, _€
En(yn-y)[ue(yn)Jl'n+B€(yn)J2'n] < En(yn-y)Ia(yn)Jl'n+B(yn)J2'n]'

since 0 < ac(y) < a(y) and ae(y) # a(y) only if y;-§ > 0 (for small €), and con-

versely for the Bc term. Using the above inequality, (5.la) and Iy;+1-y;| = O(e),

€ € € € = €, € c,l
(5.2) BnV(Yn+1)‘V(Yn) < 2ue(yn—y)[u(yn)yn(l—vll{xn =N1})

N B(y:)(l-y:)(l-vzl{x;'z-Nzl)] + 0.

€ _ €, € . €,1_ € _ € _ €,2_
17 Yn = wele (y )y Q1 le{xn —Nl}) + 8. (y)(1 v, vzl{xn N2}l.

ey

e e
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Define vi(n) by

o 1 € 1, ¢ €
Lt lyp - piex  4en N fyD) )

€ O LI t %
(5.3) Vl(n) = ZuL(yn y)u(yn)ynv R

1

Gt D . . 2 e €
+ Zua(yn y)B(ya(l yn)v2 jZn[P (Nzlyn) p (xn,j n,Nz‘yn)].

Note that Pl(x;,O,Ni[y:) = I{xi'l-N }. By Theorem 2, the sums converge absolutely

i
(the summands go to zero at a geometric rate) uniformly in n, y;, X;. Thus
|v§(-)| = O(e), uniformly in all the variables.

Next, evaluate
€,,€ € = - €_c €, € 1 €y _ €,1_
Envl(n+1)-vl(n) 2ue(yn y)a(yn)ynvllp (Nllyn) I{xn —Nl}]

h

e yE-PBD) oy v, 1PN, fyD) - 1 %,

@

(5.4) + ] 2uev (EL(y, ~Paly

j=n+l

1

€ 1 € € :
oo |y ) - Prx., . 3-n-1,N |y

n+l

[

€
Yna n+1! ]

€ - € 1 € 1l e . €
(yn-y)a(yn)yn[P (Nllyn) - P (Xn,J—n,Nllyn)l}

a similar sum for route 2.

4

We next show that the sums in (5.4) = o(cz) uniformly in all the variables
n, yi, xi. For simplicity we work only with the first sum (route l). By
Iy;#l-y:I = O(e), the smoothness of a(:) and B(.) and Theorem 2, the sum changes
by 0(52) if (yc -;)a(ye )ye is replaced by (yc-;;)u(ye)y€ Upon making the
n+l n+l’ 'n+l n nn’

substitution and using the Markov property of {xj(y), j>n} with the value y =

y; and "initial” condition

s e g
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xn(y;) = x5,

E;Pl(xi+1,j-n-l,Nl|yi) = Pl(x;,j—n,Nlly;),
we can rewrite the sum as

e v 1 € 1 L
(5.5) ote) ) E ([P (Nllynﬂ) - PNy
j=n+1

- phxt

. € R . ¢ 2
NPEE L0 VLN LGNS RE R C SORS 12 5 P SR D R I aN Y PRe I

Write dye = ye —yc, and use the differentiability (Theorem 3) of the p! and
n n

n+l

the law of the mean to write (5.5) in the form

1

ad
€ € 1 € € 1,.¢ . € 2
+ - -n- € .
o(s)dyn . E En I[Py(Nl|yn séyn) Py(xn+1'J n l,Nllyn+s6yn)]ds + 0(e’)
j=n+1
By Theorem 3, the sequence of absolute values of the integrands converges to

zero geometrically as j » =, uniformly in s, n, Gyi, and x;+ This, together

X
with |6y§| = O0(e), yield that (5.5) is 0(e?). The same rcsult holds for the
sum in (5.4) corresponding to route 2.

pefine v&(n) = v(y:")-fvi(n). By (5.2) and (5.4) and the fact that the

sums in (5.4) are 0(52).

£,€ € 2 rQE_ e, €. o1 €
E V (n+1)=V_(n) < O(e?) + 2uely -y)laly )y (1-v.P (Nllyn))

+ 8y5) (A-y5) v 22 (N |y,

Owing to the definition of a(‘) and B(-) and the fact that y € ly,.v,] the

¥
A
{

Pt
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bracketed term has its unique zero at y: = ; and it is positive (negative, i

.resp.) for yi < ; (y; >y, resp.). Thus, there is a v > O such that

(5.6) ESVE (n+])-vE (m) < 0(e?) - evviy). i

E By Ivi(n)l = O(c) uniformly in n, E;vu(n+l)-vc(n) A O(Lz) - vw'(n), and hence
(5.7) EVE (n) < (exp - eyn)EVE(0) + O(e).

Again, since |Vi(n)| = 0(€e), uniformly in n, (5.7) holds for V(yi) replacing

Ve(n), from which the existence of the {Ne} and the asserted tightness follows. g
¢

In particular, let 0 < Ko be arbitrary and let NC be the smallest integer n

such that {(exp - eny) < Koe. Q.E.D.
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n,
VI. WEAK CONVERGENCE OF {U®(-))

Definition. Recall the definition of Ne given at the end of the proof of ‘

Theorem 4. For any sequence of integers nc:’Nr' define Qf - nf—NL. Define

N X P . . :
€ = yE and similarly define the "shifted" sequences ﬁ', X' and 3( . Then f
n nc+n n n in
e \e VE L NE Ve, vE
. = + Ve . §
(6.1) Un+l Un c[ae(yn)J11 B (y )J ] f
f
" " i
By Theorem 4, {Uj, ¢ small} is tight. For each integer N, define Uc N y; N, 2
e ,N | Y
Jin via )
F
n " N [
(6.2) ueeN o EN Jelaly” vy ”"N + ByEr Ny

L
n+l n Yn ]b (U f

. . ~ve,N ve | e
where bN(-) is defined above (2.1) and we set U = U_ if IUOI < N and equal .

0 0
€,N “E,N ve,N

. v - /- e ,N . .
to zero otherwise. Also Un = (yn -y} /ve defines Y, Jin is simply the 5

indicator function of the set {route i is tried first and call accepted} for

~ve ,N ve N - e,
the system {xn' ,yn' }, where the choice probabilities {y; N} are used to select the

n,
routes and {x;'N} is the corresponding route occupancy process. We suppose

") A veE
that x;'N = xi . Let E:'N denote expectation conditional on Y, and xe N
Since I; -y| /e(N+1), for small ¢ it is irrelevant whether we use a . Bc or

a, B in (6.2), and we use a, B for simplicity. By Theorem 1, if we show that
(for each N) {BE'N(-)} is tight and that all weak limits satisfy (6.3) until first

escape from S then {ﬁe(.)} is tight and all weak limits satisfy (6.3).

NI
We now define some auxiliary processes which are used in the averaging
method ernlnved in the proof. Let P denote the measure defined bv the stationary

nrocess {xﬁ(G), ©>9>==}, with corresrondina exrectation orerator E. For each n,

it {8 necessary to introduce the process (xj(G), j>n}, but with "initial® condttion

X (;) = QC'N. (I.e,, after time n, the route choice probability is ;.) The opera-
n n
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tor E;’N denotes the expectation of functions of this process (xj(§). i>n} condi-
tional on the "initial® condition xn(§) = *:'N. Let Jij(;) denote the indicator
function I{call arrives at j+l, is assigned to and accepted by route i}, when the
route choice variable is y and the route occupancy process is {xj(§)}. Whether we
intend the ergodic process or the process {x,(?), i:p} starting at time n with

xn(§) = Q:’N will be made obvious by use of either E or EE'N. Define

Guj(y) = [a(y)J, . (y) + B(y)sz(y)].

ij

Under 3, the right side has zero expectation.

2 N_, (§°(-)} is tight in D[0,®). All weakly

Theorem 5. For any sequence n

convergent subsequences converge to a Gauss-Markov diffusion satisfying (6.3).

I1f ¢ + = ag € » =, then the limiting diffusion u(-) is stationary in that
e ———

u(0) has the stationary distribution. (In all cases u(0) is independent of B(-).)

(6.3) du = Gudt + odB, B(+) = standard Brownian motion,

L g_ _ 2 _ 1
(6.4) G = Fy(y) = 3y uy (1 y)lva (N2|y) le (Nlly)] ys; '

2 _ = -2 g - -
(6.5)  o° = E(Suy(y))” + znzlz Suy (y)8u_(y) .

Proof. Part 1. Until Part 4, all superscripts N will be omitted. Thus

ve ve v n
we write (Ez.fz.xc yc,x:'i,...} for (E

¢,N . €,N v ,N “€,N ve,N, 4 ]
n'Yn X N

E .. We
n ‘'n "n ''n '"n ! -

actually work with the N-truncated process in Parts 1 to 3. !

oLy S
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By (5.1},
VE WE e ~ g e Ye,2_ - Nu,l= ‘ve
(6.6) sn(uml-un) = Vsuyn(l-yn) v, I{xn ~-N21 lelxn Nl)le(un).

A
Let f(-,)E€ P = &53,3’ the space of bounded (x,t) functions with compact

Ty

support whose mixed partial derivatives up to order 2 in t and 3 in x are

. .
continuous. To apply Theorem 1 to {U' (*)}, we will get an £' () of the form

¢ £5(ne) = £(U5,ne) + £5(ne) + £5(ne) + £5(ne)
n 0 1 2

{ where the fi(ne) will be defined in the sequel. For each N, all o(-) or O(-)

are uniform in all variables except their argument. We have

g E g e Ve X ve vy
Enf(0n+l,nc+c)-f(un,nc) En[f(Un+l,nL) f(Un,nc)] + ft(Un,nc)e + o(e),

vE e e _ e VE ME vE 1ve Ve e g 2 ]
En[f(un+l,ne) f(Un.nE)] = Enfu(Un.ne)(Un+1 Un) + Eﬂnguu(un,ne)(un+l-un) + o(€) 4

_ e e . Ve e me,2= _ Vel i
(6.7 /Eufu(un,ne)yn(l Y Py (U) [0, T{X" " %o} v (X e ) i

n

£ ne e Ve e 2
+ ;u(Un.nC)En(Un+1‘U )" + o(e). :

By the differentiability result of Theorem 3, we can rewrite the term

before the o(c) as followg:*

2 e ve Ve, AE, Ve e, v
£ € Ve 2
ebN(Un) uu(Un.ne)En[a(yn)Jln+B(yn)JZn]

= eml(NE VE €. = - - =
Dy Uy W eI B e (D)) 914813, (7012 + o(e .

2

e o b

*The terms EﬁJln(;) and Eﬁain(;ﬁ) differ only in that in the first case y is used
: A
as the choice variable to get the successor state to %;, and y; is used in the

second case. -
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Part 2. We will "average out" the terms in (6.7) one by one. Define

fi(ne) (analogous to the definition of Vl(n) in the last section)

Y MLV ¥ 2ext s vy -
(6.8) € (n) = Y (@Y a yn)lu(Uu,nu)jznlvz(l (X, 3-n,N, [y

2 Vi 1, U 1 “wy,
-1 (N2|yn)) - %_(P (Xn,]—n,Nl|yn) - P (N1|yn))].

Proceeding analogously to the method of Theorem 4 for Vi(n), we evaluate

L i,9%¢ . Ve, . ve i, ve . e
(writing P (xn,) n,Nilyn) in the more convenient form EnP (xn+1,3—n—1,Ni|yn)

in T3 below, for j > n; see above (5.5))

€€ £
(6.9) gnfl(ne+c) fl(ne) = T1 + T2 + T3,

VE G _VE € ve v , 2 ne 1
= - - = -v. I =
T Veuy (1 yn)bN(Bn)fu(un,ne)[(vzr{xn N, b-v T(X

1 1

2 e 1 ve
- (v,P (Nzlyn)-vlp (N1|yn))]

€ € . € e _ne .
T, = /Eugn[fu(ﬁn+l,nt+c)bu(an+l)yn+1(l Yo, ')

*® 2 ,ne , vE 2 e
L (PR el N VE )Rt [FE L))
j=n+1l

1 ye . Ve 1 e
- v, (P (*n+1,3-n-1,ullyn+1)-P (N f¥E 00,

NE g nE e
T, = -/Eu[fu(Un,ne)yn(l-yn)bN(Un)]

T € 2,%€ e 2 Ve
‘j-£+lﬁnlv2(p (X, 3-n-1,8, 1§50 -p2 (8, |550)

1,y Ny J g,
- v 0 (§“+l,j-n-l,N1]y“) PN Y .
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Using the differentiability result of Theorem 3 and the fact that

v2P2(N2|§) = lel(Nl\§), we get that T, equals the negative of the first term

1
on the right side of (6.7) plus

_ Ve D _ 2 S W .
(6.10) aubN(Un)ay{y(l y) lv,P (N2|y) v, P (N1|y)]Un] : + ofe).

In T., b lacing ¥° . by v and b_(0° )£ (U° +€) b
n Ty, DY Yeplacing yp .y OV ¥, a4 Ol Ty P ney 1 0EFE) DY

vE VE e veE i e _’\ac
bN(Un)fu(Un,ne) + (bN(Un)fu(Un,nL))u(Un+l Un),

we only alter the term by o(e). Let us make these replacements in T2 and denote
. 0 2 2 )
Now, split T2 a1’ 22), the first
ve

. vE e NE nE
but with bN(Un)fu(Un,ne) ((bN(Un)fu(Un,ne))u(Un+1

the resulting term by T0 T

9° into two parts (T
. ve
(second, resp.) being T2 —Un),

. vE VE . . . sye
resp.) replacing bN(Un+1)fu(Un+ (ne+e), By the differentiability results of

1
[ vE

n+l-yn| = O(e) and an argument like that below

N
Theorem 3 and the fact that ly

(5.5), it can be shown that Tgl + T3 = o(e). Thus

(6.11a) T, + T, = o(e) + Yeuy: (1-y5) (b (T £_(TF,ned)

2 3

e > T 2 ,ve R vE 2 ve
(v° . -u )j=£+1[v2(p (X 4y 3=n=1,N, |y ) - PT(N [y ))

1 e R VE 1 VE
- v (P (Xn+1,j-n—1,Nl|yn) - P (Nl|yn))].

We now simplify (6.1la) by a series of replacements, each one altering the

term by o(c). First replace all the ;ﬁ by y. By Theorem 3 and |'l\1'§+ -3:| = 0(7)

1
and a differentiability argument such as used below (5.5), this only alters the
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term by o(e). Since vaz(Nzl;)-leI(N1|§) = 0, we delete this part of the result-

ing summand. We now have

- Je VE e e Ve _Nc €
(6.11b) T, + Ty = ole) + Velb (G £ (U ,nen E (U, U“)j.§+1 ay

where for j > n+l,
€ _ 2,%€E s Sy Y s - S(1.Sy = RBE -
qj [vzp (xn+l’3 n 1,N2|y) vIP (Xn+1,3 n l,Nlly)luy(l y) En+16uj(y).
Finally, by the differentiability result of Theorem 3, (6.1lb) equals

- e e Ve O - -
(6.12) T2 + T3 = o(e) + EbN(Un)[bN(Un)fu(Un.nE)]u j-g+lEn6un(y)6uj(y).

The difference between (6.11b) and (6.12) is simply due to whether ;E or y is
n

VE e
used
to get Xn+ and Un+

1 from %e and 35.
n n

1

Part 3. Now, we "average out" the sum in (6.12). Define f;(ne) by

oo

n

€ ve vE NvE T - - - - -
£,(ne) = eby (U)) (b (U £ (U7, ne)] jz ) [Etﬁuj(y)Guk(y)—Eéuj(y)éuk(y)].

n k=j+1-

By the (uniform) geometric convergence result of Theorem 2, the sum converges
absolutely and |f;(ne)| = O(e). By a straightforward calculation using the

stationarity of {Gun(§)) under P, we can show that

gefe(ne+e)-f€(ne) = - (6.12) + ofe)
n 2 2

vEe vE vE T - - -
+ eby (U) b (G € (U ne)) jzlE(éuo(y)Guj(y)).

Finally, we treat the term before the o(e) of (6.7) -~ in the form in

which it is written below (6.7). Define fg(nc) by

e

-

e ————
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£ (U%.ne) o
€ uwu n’ 2 ,\e =
£5(ne) = e = B (TF) jZnIE"(Gu

()21

($)) 2-E(6u

3 3

€
By a procedure similar to that used for fl(nc), it can readily be shown that

f (ai,ne)

NE € € uu 2 ,ve, = - .2
Enfo(ne+e)-f0(ne) = o(e) + € 2 bN(Un)E(Guo(y))
nE
£ (U ,ne)
uu n 2 NveE € - - - - .2
- _— J
€ 5 bN(Un)En[a(y) ln(y)+8(y)J2n(y)l .
Summarizing the previous calculations

vE € £ _ ve vE VE veE
Enf (ne+e)~f (ne) = o(e) + Eft(Un,nc) + Efu(Un,ns)GUnbN(Un)

E

vE VvE VE
(6.14) + efu(Un.ne)bN'u(Un)bN(Un)j .

E Guo(y)éuj(y)

£ (UE,ne) ®
uu n' 2 ,ve, = =, 2 = - -
+ & ——5— by (U ) [E(Suy(y))© + 2j-z=1E Suy (y) u, (y) 1.

Part 4. Conclusion. Reintrcduce the superscript N. Fix N. All the

fi'“ are bounded and of order O(/e) and {ES'N} = (' N0)) is tight. Also
gi'“fe’n(ne+e)-fe'N(ne) = O(e). Thus, by [7], Theorem 2,

the bounded sequence {EG'N(~)} is tight in DI0O,»). Let € index a weakly con-
vergent subsequence with limit UN(-) . Since A is defined to be the infinites-
imal operator of (6.3), by (6.14) and Theorem 1, we see that UN(-) solves the
martingale problem corresponding to an infinitesimal operator AN whogse coeffic-
ients equal those of A in SN' Thus, by Theoren 1, {ge(_)} converges weakly to a

solution u(-) of (6.3). The independence of B(.) and u(0) 'is a consequence of

the fact that o) is the unique solution to the martingale problem. The

stationarity assertion is not hard to prove, but we omit the details. Q.E.D.




VII. ASYMPTOTIC THEORY OF AN ADAPTIVE QUANTIZER: INTRODUCTION

b

In recent years there has been a great deal of effort concerning the effic-
ient quantization of signals in telecommunications systems, e.g. of voice
signals in telephone transmission systems. Let z(+) denote the actual signal
process and A a sampling interval. In the problem of interest, the signal is
sampled at moments {nA, n=0,1,...}, then the samples {z(nA)} are quantized, and
it is only the quantized samples which are transmitted. Let 0 = EO < g, < ... <

1

g 1< CL =®, 0= Ny <Ny «ee <M where Ei' n i=20, ..., L-1, are real

L- I i+l
numbers. Let the quantization function Q(-) be defined as follows: there is

ay > 0 such that for z(nA) > 0, Q(z(nd)) = yny if z(nA) € [yEi_l,yii), and set
Q(-2z) = -Q{z). The parameter y is a scaling parameter. As the signal power
increases (decreases), y should increase (decrease) for efficient reconstruction
of the signal from the sequence of quantizations.

The problem of choosing appropriate values of y when the signal powers can
vary by an order of magnitude or morz hLas led to the study of adaptive quan-
tizers. We give only a brief description in order to formulate the problem.

For more detail and discussion of the engineering considerations, the reader
is referred to the references (4], [5]. Let € denote a "rate of adjustment”
paramete . 2r the scale parameter y and let y; denote the value of the adapted

scale 1 "“reter at the nth sampling instant. Set B & (0,1) and let O < ME <

1
Mg < ... < M; < o with Mi <1, Mi > 1. We study an adaptive quantizer which

is a truncated form of the (typical in such an application) adaptive system

(7.1) y;+l = (y;)BB;, where B: = Mi if lz(nA)| Gﬁ[yi&i_l,yiei).

Goodman and Gersho (4] did a thorough analysis of (7.1) for the case B =

1 and {z(nd)} independent and identically distributed. With B < 1, the system
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has some desirable robustness properties and this case, together with simula-

tions, is discussed by Mitra [5] and others. The last reference is concerned

PR ST SV

more with reconstruction of the process z{(-) from {Q(z(nA))! and does not give an

ey

e a® e s by

asymptotic analysis.
Generally, with non-i.i.d. {z(nA)}, it is hard to get concrete information
on {y;} for large n. If the signal power varies over time or if (as is real-

istic for moderate values of A) {z(nA)} is not i.i.d., then techniques such

A -

as used in [4]) fail, but for small rates of adjustment (e¢) an asymptotic
analysis can still shed light on the process behavior. At the present time,

it seems that little more can be done for the general case. Here, we scale the

problem so that an asymptotic analysis is possible. For mathematical as well
b
as practical purposes, it is useful to confine yi to some finite positive ﬁ

interval [yg,yu]. Now, we define the truncated form of (7.1) which will be

studied. Let a > 0, 0 < ae < 1 and let {li} be real numbers such that 21 <

T ekl

£, € eue < EL and £

2 <0, lL > 0. Then we use

1

P oot

€,1-ea _e|"u

G | €
: (yo) A

(7.2) Y41

where | denotes truncation and

€ . . (. E €
Bn = (1+€li) if |z(nA)| e:[ynﬁi_l,ynﬁi).

The asymptotic results can be used to get information on the effects of the

{li}, 4, structure of z(-) and a on the performance for small e. For notational

convenience below, let Yo < 1 and Y, > 1. Rewrite (7.2) in the form (7.3), where

1 1-
‘ y £ - y[l-ea log y]+0(£2) and (1+eb;)

1}

€
BN are used, and F and b: have the

obvious definitions.

A T S T ISy T TS



.

o —

-27-

y

. y
ly:‘ﬂ1-‘(yn,z(nl\))+0(t.2)] u

€ € €, € € 2
(7.3) y = lyn(l+ebn)-cuyn log y_+O(c )]

n+l
In [4], the process {log yi} rather than (yi} is dealt with.

We proceed in very much the same way that we did for the automata problem.
The main difference arises from the unboundedness of {z(nA)}, under assumption

(7.6) . By definition,

€ €
1szix{lz(nz\)l €ly &, v 8]}

o
™
[}
e~

i

There are continuous functions l;(-) such that (7.4) and the properties below

it hold.
€ € €, € [ € 2
(7.4) Yool = yn(1+an(yn)) - eay log v, * o(e™)
. € € 2
=y + eF_(y,,2z(nd)) + O(e ),
where
(7.5) B (y) = If 28 () 1{|z(na) | € 1 £.)
. n'¥) = (I rtz Yei1¥hy

i=]

Also, Ei(') can be chosen such that li(-) = li out of an O(e) neighborhood of

. €
Y, (resp. yu) if 2, <0 (resp. 2, > 0), and 0 > li(y) > li for B, <0 and

0<25(y) <&, for &, > 0.
i i § 1
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Some assumptions. For specificity, z(:) is assumed to be a stationary

Gaussian process with a rational spectral density. Thus there are an asymptot-

ically stable matrix M, a matrix C, a row vector D, and a process v(-) such that

(7.6) dv

Mvdt + Cdw

Dv, w(-:) = vector-valued standard Brownian motion.

This assumption is not essential - only certain smoothness properties of
the multivariate density are used, together with the exponential rate of

decrease of the effects of the initial conditions.

Define ?e(y) = EFE(y,z(nA)) and %(y) = EF(y,z(nd)). Let og = var z(t).

We have (the subscript y denotes the derivative)

R L £2,2 (2,2
2 i i~
7 S EW, T 2. (6, exp - —=— - £, _ exp - =2 - asy
dy vy 7m0 i=1 1 i 202 i-1 202
0 0 0
L-1
2 z 2 2 2
= (2.-%, .)E, exp ~£.y /20, - o/y.
/5;60 i=1 i i+17 i i 0

We can see from the terms in (7.7) that %(y)/y is the sum of two strictly convex
functions, the first being bounded and having a negative slope, and the second
going to » as y + 0 and to < as y + ®». Thus there is a unique y € (0,») such
that iy(;) = 0. Also Fly) >0 for 0 < y < y and ﬁ(y) <0 for y > y and ﬁy(;)

# 0. We assume that y EE(yl,yu). For small €, the assertions in the last
sentence hold with ﬁc replacing F. Define Uz - (yi—?)//z and let En denote

expectation cvonditioned on {(v(3jA),3<n}.
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VIII. TIGHTNESS OF {uﬁ, SMALL €, LARGE n}

The proof is similar to that of Theorem 4 in Section V and we only set

it up and indicate how to deal with the fact that {z(nA)] is unbounded.

Tt LTI

—-
P

Theorem 6. Under the conditions in Section VII, the conclusions of Theorem 4

i e .

hold.

fieae

Proof. Define Vi(y) = (y-?)z. There is a Y > O such that (y-y)F(y) < -yiy),

SR

all ¢ > 0 and y E[yz,yu]. We have

SR

€ €, 2 2 € _ _E,_2 € € - € 2
| ) (yn+1-yn) = 0(e™), Yool = yn+€F€(yn)+e[Fc(yn,z(nA))-Fc(yn)l+0(e ),

‘:!
i
§

L
Fe(y) = {lez(y)P{yEi_1§|z(nA)|<y£i} - aly log y),
(8.1)

L
€, € € _ 5 € € £, €
En(yn+1-yn) = EFE(yn) t ey i§l Qi(yn)[Pfyii_ljlz(nA)|<y(i|v(nA-A)}

2
- P{y Ei_lilZ(nA)|<y Ci}] Y=y£ + 0(e°),
n

As done in connection with (5.2) (where a., B, were replaced by a,8), we get an

upper bound for the second moment by replacing li(y;) by li (hence ﬁc by f). Thus

€, € € 2 €_= %€
(8.2) E V(y ,)-Vly ) <0(e”) + 2ely -yIFly))

+ 2(y¥) [sum in (8.1) with £5(+) replaced by 1.




Next, define Vi(n) by Vi(n) = V;("'Y;)' where

@ L
(8.3) Vi(n,y) =2eqy-y) [ 1] y2, (Plyg,  <|2(38) | <yE |vins-a)}
j=n i=1 o *

- plyg,  <lz(na) |<yg 1.

|V§(")| can be estimated by use of the following fact. There are X < « and

0

a > 0 such that IeMtI < Koe_at. There is an a, > 0 and a K, < = such that for
-a11/2
T, > T, > 0 and on the set {v(t): |vit) e <1},
-a T
(8.4) |plv(err)€B,, i=1,2|v(0)} - Plv(t+r)EB,, i=1,2}| < ke * .

1

for all Bl, 52.

In order to use (8.4) (in this application we set B, = range space of v(t)),

2
write the gum in (8.3) as

H o
(8.5) Yo+ Y,
j=n j=H+l

-(m—n)Aa/ZI

where H = min{m: e v(nA-4) |<1} = O(1+max(0, log|v(nA-8)[)). Then

the first sum in (8.5) is O(l+max(0, log|v(nA-d)|)), and the second is 0(1) by

(8.4) and the summability of Zj>oexp -a,jd. Thus |Vi(n)| =

1
O(e) [1+max{0, loglv(nA-A)I)] f'o(e)(1+|v(nA-A)|). From this point on, the

proof is exactly the same as that for Theorem 4. Q.E.D.

— R T .
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IX. THE LIMIT THEOREM

Ve VE
We continue to use the tilde A terminology of Section VI, and define Un' Yoo

N
Ei, etc., as there. Also, set :(nA) = z(ncA+nA) and v(nd) = v(ncA+nA). The idfa

e e . .
now is still to prove weak convergence of U (+). We use En for expectation condi

, g N ve,N ve,N_=
tional on {v(ja), j<n+n€}. We have ((9.1b) defines yn' by Un' = (yn y)/J;)

(9.1a)

(9.1b)

Theorem 7.

A, - g “vE e N o (e 3/2
U U+ /E?e(yn) + /E(Fc(yn.z(nA)) Fly ) + 0™,

N A ve,N ve,N ~ e ,N 3/2 vE ,N
Sl =N i RN + e N E e - FE™) 4 ote )an(ﬁn ).

Under the conditions of Section VII, the conclusions of Theorem 5

hold, but where G = ﬁy(;) and (stationary process z(+) used)

o AL

lp 5>

s

0% = EF%(3,2(0)) + 2 | EF(3,z(nA))F(§,2(0)) .

n=1

i

et Py M AR T | P

Remark. If M, C or D were time-varying, then an extension of the tech-

nique is possible, provided that the time variation per step is O(e). The limit

i

diffusion yields information on the dependence of the performance on the para-

meters «a, {Ei). A, {51}. as well as an estimate of the asymptotic variance and

correlation function for small €.

Proof. Except for the unboundedness of the noise {z(nA)}, the proof

would be essentially the same as that of Theorem 5, and only an outline will

be given.

-

n, -
Owing to the truncation |U:'N| < N+1, the F_, F_ in (9.1b) can be replaced by

{{ F and i, respectively, without changing the values, for small €. Let us make

A ;
{ the replacement., Fix f£(-,')€E ifg's. Drop the superscript N on all variables

i for notational convenience, as done in Theorem 5. Then, by a Taylor expansion, ]
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Ve, vE o Ne ne e ~ = e NE
(9.2) Enf(Un+1.nu+t) f(Un,nL) o(e)+£ft(Un,nL)+efu(Un,nc)Fy(y)UnbN(Un)

+ V2£ (U5, ne) BE (F(F+/EUS, Z(na) ) =B (3+/EUS) Ib, (TE)
u n n n nn" N n

+ £ £ (U, ne) B (R (F+/E0E, 2(ns)) - (7+/e05) 1202 (WD) 4

Since the second derivative of EEF(y,g(nA)) with respect to y is bounded by g

constant[1+|3(nA-A)|], the next-to-last term of (9.2) can be written as ij
nNe e = v . = e !

(9.3) /Efu(Un,ne)En[F(y.z(nA))-F(y)]bN(Un) é%

1

e 3 e N A e e n :
+ ef (U ne) 8 (F(y, 2(n0))-F(y) ] y=§unbN(un)+o(e)u+|v(nA—A)|1. |

The last term of (9.2) can be written as (recall that F(y) = 0)

€ e vE - 2=y 12,2,V
(9.4) 2 fuu(Un,ne)En[F(y,z(nA))-F(y)1 bN(Un) + ole).

Now, we use the method of Theorem 5 in order to average out the terms of

(9.2). We use £°(ne) = f(Bi,ne)+ Z?=3f§(nc). Define fg(ne) by (to average
out the second term of (9.3}))
e VE

€ e T 9 e L -
£5(ne) = ef (G-, ne)b (U )U- _Z 7y EnlF (. 20380 -F(y1)
j=n y=y

By an argument similar to that used below (8.5), together with the derivative
bound stated above (9.3), it can be shown that Eifg(nc+c)—f§(nc) = - (second
term of (9.3)) + o(r) 11 + |¥(nA-A) |%] and that |f§(nc)| <o(e) 1 + |V(na-a)|].

Next, introduce f:'(m) ({to average out (9.4)):




nunsd
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€ € e 2,v€ < T I 2,~ 0
bl ’ ~-E ’ A .
£ (ne) = 2 fuu(Un.nc)bN(Un)jEn(BnF (y,2(j8))-EF“(y,z(3A)) ]

Then, as for f;, we have If:(ne)l <o(e) 1l + |3'nA~A)|]. Using this, it is not

hard to show via a small amount of manipulation that

. ~ L o NE NEL2 = YAy CEF2 (S, 7(nA)) )
B £ nese) - ne) = = G € ] neiby (G IR ty, Z(n '

+ole) 11 + |vina-8)|).

Next, introduce f;(nc) in order to average out the first term of (9.3):

: e . NE =
f5(ne) = /& fu(E;,ne)bN(Ui).i EP (7, 2(30)
J=n

N 3
Then, again, |f§(nc)| = o(Ve) (1 + lv(nA-A)l) and we can vrite

(9.5a) Ezfg(ne+e)-f;(ne) = - (first term of (9.3)

e e Ve s g - n
yme)by (U7, )-£ (0 ne)b (U)] ] E- F(y.2(38)).

+ egi[fu(ae
j=n+l

n+l

With a small amount of manipulation, we can show that the last term of (9.5a) equals

e e e ps VE e - N ~
(9.5b) eby (U ) [£ (U, ne)by (U )] j'£+lznr(y,z(jA))P(y,z(nA))+o(c)[1+|v(nA-A)|].

Finally, f;(nt) is introduced in ordor to averaqo out the sum term in (9.5b) in

the same way that f;(nt) was used to average out (6.12) in Theorem 5. Define

e AT - - B . - x




(9.6) f;(ne) = e[fu(ﬁi.nc)bn(ﬁﬁ)lubN(U;) .

“ 1T IEREZ0ADFG,ZG8) -EF (Y, kB Py, Z(58)) ).
j=n k=) +1

By (8.4), fZ(nt) is well defined and is 0(¢) [1 + I%(nA—A)Izl, as will now be
proved.

N
: Define H as below (8.5) and let E;BF

3k denote the (j,k)th summand in (9.6)

i and write the sum in (9.6) as

H o0 o 3 )
) EZB?k + 3 y E;a?k 1+ 11,
je=n k=g+1 7 % jaH+1l k=j+1 7 I

By the argument connected with (8.5), the inner sum in I is bounded by

(9.1 § Iﬁzaﬁkl < 1 EY
k=3+1 J k=3

jkI = 0o(1 + |v(na-a) ).

"
Thus, by the bound on (H-n), 1 < o(1 + |v(nA-A)|2). To treat II, we notc the

Also, for k > 3,

B§F(§.2(kA)) < K, lexp -a, (k-3)A+1{| (exp -a(k-$)8)V(38-8) | > 1}1.

With a little more work, these estimates yield the existence of a K. < = such

3
that IB:agkl < (140([V(nd-8) DR, exp -a,A[(3-n)+(k-3)1/2, from which the fact

that 11 = O(1) and the last sentence of the previous paragraph both follow.

| It is straightforward to show that

—

ne &
following: there is a K2 < » guch that for H < j < k, IEEB;kl < K2 exp —al(j-n)A.




S R EE S T T AT T s T T e T e

|t .
Enf;(nm+t)-tL(nr) = ~(sum term in (9.5))

Ve ‘Lug ‘Lt T - N - )
+ eb (U0) 1f (U ne)b (U)) Zlnp(y,z(nA))F(y.%(O)) + o(c) [1+]|v(na-8) |“].
n:

Summarizing, with f'(ne) defined by £5(ne) €U n) 4 [ ftno), we

have
9.8) X £ (nete)-£'(ne) = o(e) [1+]V(na-0) | %) + of (8 ,n0) + ef (U ne)F_(3)Ulb (T5)
n t n u n Yy n N n

(e . = -
/)by (U )] ) EF(y,z(nd))F(y,z(0)) !

+ eb (U5 £ (U
N n u
n=1

€
n

VE
f (U ,ne)
+ eby (Up) 22D —— r (7,2(0)) +ole) [1+]V(na-8) | ) .

. e, N R . .
Now, if the {U ' (")} (returning to the use of superscript N) wecre tight

for each N, then (9.8) and Theorem 1 imply that any weakly convergent sub-
e
sequence of {UL'N(-)) converges to a diffusion with operator AN, whose coeffic-
4%
ients equal those of A in SN and, hence, that the original {u“(-y} convergc

weakly to the solution of (6.3) with the G and o defincd in Theorem 7.

But (dropping the superscript N again) |X?=3f;(nc)|= O(/Z)(1+‘3(nA-A)IZJ
and |ES£% (nese)-£5(ne) | = o(e) + o(e) (14]|V(na-A) |%] and for any T < = ,

K » 0, the Gaussian property implies that

lim P{sup rh(nc)|2 < K} = 0.
€+0 n<T/f

Thus, tightness follows by Theorem 2 of (11 or [7]1, as it did for the case of

Theotem 1. O.E.D.
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A general method for approximating systems with wide-band inputs by diffusion
processes is discussed. The input noise itself can be processed nonlinearly by
elements of the system. One particular case is examined in detail, that of a
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I. Introduction

Consider a (linear or nonlinear) dynamical system with a wide-band noise
input. It is often of considerable interest to approximate such systems by
diffusion models so that, e.g., Markov process techniques can be used. In [1] -
{d4), 17}, several powerful methods for doing this have been developed.

Roughly, the input noise¢ process is parametrized by ¢ and as ¢+ + 0, the bandwidth
(BW) > =, while the power per unit BW converges to a constant. The limit process
is found via methods of weak convergence theory. The methods are particularly
useful when the system noise (and/or signal) is processed nonlinearly; i.e.,

only nonlinear functions of the noise appear in the dynamics. The problem is
often not what the so-called correction term might be, but what the entire

form of the limit is, and this is not usually easy. In fact, when nonlinear

functions of the noise appear, the notion of "correction term" loses much of its sense.

In this paper, the system of Figure 1 is dealt with.

F(ve) + Dye,
(1.1) ¢ . ¢ c r
L€ sign u , u =s+n - G(v), v (t)E R,

%3
]

where n°(-) is a scalar-valued wide-band noise input process. Conditions

€ . . . .
on F(*), n (-) and G(-) will be given below. The main result is that as ¢ + 0O
(BW + =), the measures of {v°(-)} converge to those of v(-) where v(-) satisfies

the It8 equation
(1.2) dv = F(v)dt + LD[(§:§iXL)(¢2/n) dt + ¥2 1ln 2/a dB],

where B(°) is a standard Brownian motion and L, o, a will be defined below.

Roughly, "a" is related to the correlation function of the ne(')/(E[ne(t)|2)1/2,

and 02 is the intensity of the spectrum of n®(-) in any band [0,BW]) for small ¢.




If, in the system of Fig. 1, the saturator and gain Lz were replaced by a

gain K, then the limit would be (follows from the method of this pajper)

(1.3) dv = F(v)dt + KD[(s=G(v))dt + V2R abl,

where for the noise modeilused for (1.1), R = oz/a. There is no so-called
"correction term”. Owing to the form of the saturator function, the formal
technigue of Stratonovich is inapplicable.
é The example is offered to illustrate what can be done with one particularly
annoying but useful nonlinearity. The basic method is widely applicable. The
E ‘ scheme is unrelated to statistical linearization, which in fact is not con-~
cerned directly with approximating processes.

Before proceeding, compare {(1.2) and (1.3) for the case when the feedback

! -G(*) 1s supposed to be stabilizing (i.e., when the system is designed to make

the error s(t)-G(ve(t)) small. In (1.2), the term in the dynamics which
involves the error is proportional to 1/0, and in (1.3), the noise term is

! proportional to ¢. Thus for small o, we expect the limiter to enhance stability

without increasing the noise effects, an important point to note. For large 0,

the limiter does not seem to be helpful. A simulation comparison of the "pre-limit"
with the limit for a somewhat different problem (a phase-locked loop with a satur-
ator) suggests that the limit (¢ + 0) results are often the "worst" case, in that
(for example) the limit mean square error often increased to the limit value as

¢ » 0. (They also suggest that often the limit process is approached quite fast

(as measured, say, by the mean square value of the input to the limiter) as ¢ + 0.)

We do not know the extent of applicability of this rule - but it seems to hold

f frequently. When it does hold, the limit results can provide useful upper bounds,

and syatem improvements suggested by the form of the limit might well be improvements

PR —m

PRI
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for the “pre-limit" case also. Unfortunately, it is not usually possible to get
approximate diffusion processes where thc BW is not large - so, even if it is not

large, the results for large BW might be a useful gquide to the qualitative behavior.

Reference [5] contains some applications to problems in communications
theory of the same general idea. But owing to the unbounded nature of the noise
and the form of the discontinuity and feedback, the problem here is harder
and the analytical details different.

Section II gives specific assumptions. The main background theorem and
some comments on weak convergence appear in Section III, and the convergence
{ve(')} + v(-) is proved in Section IV. A similar method would be used with

other nonlinearities.

II. Model Assumptions

1. The noise model. Let z(-:) denote a stationary Gaussian process with

correlation function 02 exp -a|t|, a > 0, and set n®(t) = ze(t)/e, where

25 (v = z(t/ez). As € » 0, the spectral density of n®(-) converges to 202/a
on any finite interval. The scaling is a convenient and common way of getting
a noise process n®(+) whose spectrum converges (as € + 0) to that of a white
noise with a constant power/unit bandwidth. For other correlation functions
the v¥2 1n 2 in (1.2) is replaced by something slightly different. We use

the noise form only to facilitate the evaluation of the coefficient of dB(*)
in (1.2). The Gaussian assumption simplifies the proof that certain integrals

converge - but is not essential.

2. The limiter gain Lr. 1f Lt ° L, a number not depending on €, then

as £ » 0, the "increased wildness" of n" () essentially wipes out the saturator -
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replacing it by an open circuit. Thus Le must increase as € decreases. In
any particular fixed practical system, one particular value of LC will be used.
But as the bandwidth -+ «, this value of LE will have to increase (see proof in
Section IV) and ELe will have to converge to a non-zero number. So we use

LE = L/¢€.

3. Other assumptions. G(-), F(:) are continuously differentiable and

the solution to (1.2) is unique in the weak sense. s(°) is right continuous

and uniformly bounded on [0,®). The method is most casy to use if the functions

are smooth. The analysis will be done with gu(-) replacing g(-) = sat(-),

where the piecewise linear g (<) is defined in Fig. 2. We then get the result
o g€

{v¥()} > v(-) as ¢ > 0, then a - 0.

III. Weak Convergence; A Convergence Theorem

Tightness. Let Drlo,w) denote the gpace of RF-valued functions on [0,»)
which are right continuous and have left-hand limits. A certain topology
called the Skorokhod topology ([6], section 14) is usually put on p*. The
process v () is considered to be a random variable with values in D' {0,») and
induces a measure P_on it. (PE} or {v®(-)} is said to be tight iff for
each § > 0 there'is a compact KGGE Dr[0,m) such that PE(KG) > 1-§, all €.

{v€(~)} is said to converge weakly to a process v(°) with paths in DF{0,») and

inducing measure P on it iff for each bounded real-valued function g(+) on
Dr[0,w), fq(m)dPE(w) -+ fq(w)dﬁ!w) as € + 0. Thus weak convergence is a
generalization of convergence in distribution. It is the appropriate form of
convergence for our problem. The tightness condition for {ve(-)} will hold

under our assumptions.
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Truncated processes. The actual technical proofs of tightness and weak

convergence are easier if the processes {v'(-)} are bounded. Define

(3.1) o““=1pw“m+w““www““n y* =Lﬂam“ﬁ,

where bN(v) =1for vES, = {v: |v|_<_N}, bN(v) =0 for vg § and b (v) € (0,1] v

N+1

E and has third derivatives that are bounded uniformly in v and N. If we can .
o

prove convergence for {VE'N(') , €20} for each N, then Theorem l says that we

can prove it for (1.1). Thus, the truncation is purely technical and does not

g e

affect the result.

€,N

Let ?i'N denote the o-algebra induced by (v&'N(s) ,nls) ,s<t} and B

|
Definitions. Let A denote the infinitesimal operator of the diffusion (1.2). ‘k
the cor- ¢
X N €,N !
responding conditional expectation. Actually?i and Et' depend on a“ also. '
But we usually suppress the a affix. Let & be the class of measurable (w,t) i

functions such that if g(-) € &, then E|g(t+6)-g(t)| > 0 as 8§ + 0 and

. §
sup E|lg(t)| < » and g(t) depends only on {v¢'N(s) ,n%(s) ,s<t}. We say p=lim, £ =
t
~€,N .
0 iff sup, tdf‘s (¢)] ¢ » ana E:lf6 (t)| + 0 as § + 0. Define an operator a¢'Y and its
’

| domain ;‘7}(116'“) as follows: g € .@(ﬁe'n) and ﬂe'Ng =q iff g,q€E & and

5" Ng(t+8)-g(t)
p-lim E| 5 - q(t)| =o0.

8}0

The following theorem is Theorem 1 of (2], adapted to our case. 'S’;\O denotes

the set of continuous real-valued functions on Rr x [0,m).




Tr.eorem 1. Let the equation (1.2) have a unique weak-sense solution. Fix N.

For each f{(:) € &, a dense set (sup norm) in fo, let there be a sequence

(£ Nenew satisfying the following:

(3.2 plim [ Nw-£0" N, 0| - 0,
e*0
a0

(3.3 £V e oY,

3.4 pdim AN M- et N Lo | - o,
>0
a0

where AN is the infinitesimal operator of some diffusion process and the coeffic-

ients of AN and A are equal for V'G?SN. Then if {ve'N(-)} is tight for each N,

{vi(-)} » v(-) weakly.

Comment. Tightness is not hard to prove here. See comments at the end
of the proof of Theorem 2, which applies Theorem 1 to our case (l1.1). Given
f(-,°), the main problem is to find the fE'N(') and to verify (3.2) - (3.4)
(and ultimately to prove tightness). The method used here and in [1], [2) is
similar to the averaging method used in [3). We choose the form fe'N(t) =
f(ve’N(t),t) + fi’N(t) + f;'N(t), where fi'N(t) is chosen so as to "average out"
. . . 2E,N €,N €,N
certain noise-dependent terms in A f(v (t),t), and f2 (t) is chosen to
~e,N

"average out" certain noise-dependent terms which result from applying A

€,N . :
to f1 (t). In the proof lime+0 means lz.me_’0 11mu+0'

a>0

g - —w—
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IV. The Convergence Theorem

Theorem 2. Under the assumptions in Section 11, {v ()} converges weakly to

v(:) as ¢ - 0 and then a » 0.

2,3 D .
Proof. Let £ = i)o , the subspace of %o of functions whose mixed partial
derivatives up to order 2 in t and 3 in x are continuous. By Theorem 1, for

each N and £(+,-) € 2, we only need to find {f*'N(-))} satisfying (3.2) - (3.4).

For notational convenience write v 'N(-) as v (-) in this proof, but we are always

working with the truncated process vEe N(~).

Part 1. Fix f(*,*) € 9. Then

4.0 ANt e,0 = £ 0,0 4
+ b (v (ENEL V(1) ,8) - [FvE(E)) + ‘:—L g_(s(£)4n® (£)-G(vE (£))].
Note that for u in any bounded set
(4.2) %Ega(ume(t)) z é;(u)/c = %—[P(z(o)>-eu+ea}-P{z(O)<-eu-ea)+0(ea)/e]
= V2/1 2+ 0la) +ole),

which justifies the Le = L/e scaling. We will get fE'N(-) in the form

£ M0 =t e v N s N,

where the t‘i'“(-) will be defined below.




o ———

The following estimate will be uscd.

(4.3) On_the set {]|z(t)|<1} or even on {|z(t)|iea1/2),

-a 1
|p{z(t+1) € Blz(t)} - P{z(t+1) ¢ B} < ce 1" for some constants C and

a, > 0, uniformly in B. Similarly, on the same z(t) set and for

N
-4, T

|P{z(t+ti)€ B, i=1,2{z(t)} - P{z(11+t)€ B i=1,2}| < ce 11 for some

> 0,

B_.

a 1’ 2

1 >0 and C < » and all B

In the sequel the values of a, and C may change from usage to usage.

1

Define aa(u,ne(t)) = ga(u+ne(t)) - Ega(u+ne(t)) and define

fi'N(t) % by (v© (t)) f;(v‘(t),t+r)DEE'N§u<s(t+r)-c(vc(c)).ne(c+r))dr

t

eLbN(ve(t))

€ 2 €,N- 2_,_ € t
f;(v (t),t+e T)DEt gu(s(t+c T)-G(v (t)Lz(;3+T)/e)dt

O——8 O —. 8

By (4.3), fi'N(t) = O(e) uniformly in w, a,on the set {|z(t/cz)|§1}.

Define w, = min{t: e_a1/2|z(t/ez)|§1}. Write fi'N(~) as

w (-]
1l
e,N - €N, €,N.
£, (t) EI E, {-} av + eI E, (-} ar.
0

Y1

The first term is bounded in absolute value by eCw, and the integrand of the

1

7. Thus

second by C exp -a;

@.0) 5N | < celaw)) < cell + max(0,10g2 () )],
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Part 2. It can be verified that f ( ) € D(A 'N) and that

<e,N L' LbN(v (t))
(4.5) A (t) = - —— - £ v n)tnn (s (£)=G (v (£),nE ()
+ % f ""[b (v () £ (v! (6, £41IDG (s (E+1) =G (v (0] 10" (£4T)) ] "etn,

0 v

where the subscript*v denotes the gradient of the bracketed expression with

respect to vE(t). At this point, let us simplify the notation by dropping the

bN(v) terms. All of the fi'N will be proportional to either bN(vE(t)) or
bN(ve(t)). Changing variables 1/52 + 1 and splitting the integral in (4.5)

into two parts and using v = bN(vs)[s-G(ve)+Dga/€] (but dropping the bN(v))

yields

2 e,.N | € 20, 20 ot t
(4.6) L Jgt (D fv(v (t),t+e 1))nga(s(t+e 1) -G(v (t)).z(—§+r)/c)
0

3

g, (s (0= (v () +z(t/e?) fedar + o(c)

Mot (v i), ere) g (s(t+e21)-c(v‘(t),z(55+r)/e)o .

€

-

2(_ €
”,jt

0

ga(s(t)-G(ve(t))+z(t/€2)/6)dT + 0(e) .

The terms in (4.6) exist by the same arguments which led to (4.4). We
next show that the second integral of (4.6) is negligible as ¢ + 0, a + 0 and
get an estimate which is useful for the tightness argqument. The facts that

\]

s(t) and v°(t) are bounded (reccall that we are using the truncated process

(3.1)) and that the support of g (w is*in [-a,a) and that g (W] < c/a
’ ’

9 (-) is the derivative of 9 () with respect to its argument. The lublcript v
I

denotes the derivative with respect to the explicit argument Vv: replace v (tﬁ
the derivative with respect to v, then set v = vE(v).




will be used frequently and perhaps without specific mention. Let I1{A} denote
the indicator function of the set A.

By (4.3) it can be verified that
€,N-

N ga,v(s-G(v).z(fE+r)/()| < lexp may T+ I(lz(t/r%|>e°1/2}lc/t.

= |E

We need a bound on Y which goes to zero as € + 0. First we get such a bound

when |z(t/cz)| > 1. Note that

4.8)  Plls-c(v+zt5+0)/e| < alz(e/e?) =z} = ofac)
[

uniformly for lzol > 1 and 1 > 0 (recall that s, v are in a bounded set -
for each N). Now, (4.8) and the facts cited above (4.7) imply that Y is bounded

by O(e), uniformly in |Z(t/€2)| >1l, Tt > 0. Thus on |z(t/cz)| >1,

aT/Z}]l/Z

(4.9) Y < [exp -a,T + I{lz(t/ez)|>e C(e/cn)l/2

1

(use |x[ < a, |x| <b > |x| < Yab) . Thus, on integrating the bound when

Iz(t/c2)| > 1, we see that the second term of (4.6) is bounded above by
Cil + max(0, log|z(t/ed )1 (esa) /2,

Now, we look for a bound when |z(t/c2)| < 1. Split the second integral in
€ )
(4.6) into the two parts [ + [. The first part is O(e/a). Note that the
0 €
density of z(EE+r), T > €, conditioned on any value of Iz(t/ez)l in [0,1), is

2

).

€
bounded above by 0(1//e). So (4.8) then holds with O(ea) replaced by 0(e1/




Combining this estimate with (4.7) yields that Y is bounded above by (4.9) when

1/4

‘z(t/cz)l < 1, but with the change that (e/u)l/2 is replaced by (¢ /ul/2> in

(4.9). Thus, on integrating the bound, we get that the second term of (4.6) is

bounded above by

1/4 u1/2.

(4.10)  C[1 + max(0, log|z(t/c?) 1ty

Part 3. We turn our attention to the first term of (4.6) and show that,
by an “"averaging", it can effectively be replaced by its expectation. To facil-

itate the development, we define the following terms.

h (v,t,1,p) = LzD'f (v,t+T+p)D-g (s(t+1+p)-G(v)+nE(t+1+p))
€ vv a
o
F{ . ga(s(t+p)—G(V)+ne(t+p)),
E.‘
: He(v,t,r,p) = Lzo'fvv(v,t+521+gzo)D-aa(sﬂt+521+czp)-G(v)+z(f5+r+p)/e) .
4
[ 2 t
- - ga(s(t+e p)-G(v)+z(-E+o)/e),
: €
€,N _ 1
(4.11) Ao f(v,t) JEHE(V,t,T,O)dT == JEhe(v,t,r,O)dt.
€
0 0
o0 (- -]
(4.12) f;’N(t) E % Idp I dT(Ez'NhE(vE(t),t,hp) - Ehe(v,t.r.p)l ]
e 5 vavt ()
1 0
. 2 e/N €
g_J = ¢ [dp J dr[Et He(v (t),t,t,0) - EHE(v,t.r.o) c 1,
| 0o 0 vay (t)

e ®

g g
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where ¢ implies that v is replaced by v((t) after taking the expectation.
v v (t)
We must show that f;’N(') is well defined. First note that the inner integral
€,N

of £.' (t) (with p = 0 and a change of variables) is just the first term of

(4.6) centered about its expectation. The form of f;'N(-) is chosen to allow "

us to average out the first term of (4.6) and to cffectively replace it by its

Log ot

N
average value A:) £(v'(t), 0.
N . .
By the method used to bound |f; ()], we can get that the inner integral
€,N

of £ (t) exists for each p. Recall the definition Wyt min{w: ¢

-aw/2 I
2

z2(t/7e?) | <1)

and write (4.12) as

e2 f do J dt EE'NB + €2 J dp [ dt Ei'NB 11 + 1. \
w 0 0 4]

First we show that II is well defined. By (4.3) and the definition of Wy the

absolute value of the integrand in II is bounded above by C exp -ap, a) 0.

Also ‘EHC(v,t,I,p)I < Cexp -at for some a; > 0. By (4.3) and on the set :

{03w1}, and for C, a, (whose valuces again may change from usage to usage)

1SN (v, e,t.00 ] < ESNIEYN W (v, |
t e -t 2
t+e p

< C Ec'Nlexp -a 1 + I{e—°‘/2|z(;—+o)i>l}l

- t 1 ‘2 -

= C exp -a; 1 + CP{ lz(%-ﬂs) |,’em/2l r)gwl;z(t/cz)}

[
< C exp -at + Ce_aT/zl-:Hz(%ﬂ‘) ll ozwlsz(t/cz))

€

< C exp -a 1.




Chebychev's inequality is used to get the next-to-last inequality. Combining
the above estimates yields that the inteqrand in II is bounded by (for some ‘1
C oS o) Coexp -al(‘rﬂ)). Hence T1 = 0((2).

The term I is also o(u2) but not uniformly in z(t/zz). Bound the inner

integral of 1 by

(s}
€,N
J ar|e;, "B < E

0

«©
;'N J at |*'N_ 8| 1r1.
0

t+e 2p

N
By the arguments used to get the bound on |f§ (t)l, we get
III < ce? Ei'Nll + max(0, 1og|z(33+p)|)1
€

< c? E;'Nll + log(lz(EE*p)I + 1)),

t

By Jensen's inequality and the concavity of log(-),

III < celn + 1oq(lz(%)l +C)).
€

Since w, < ¢ max(0, loglz(t/cz)]),

@.13 5N ] < e’ + tog(lz5) ] + 1P
f

Henceforth, we will give only an outline of the details, which can all

be filled in via the estimates and techniques developed above. It can be shown

that f;'N(')ff PA'N) and that

>°’
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(4.14) ﬁE'Nf;'N(t) = negative of first term of (4.6) + A;'Nf(vt(t),r)

+ (terms whose p-lim equal zcio).
0
™)

The term whose p-lim = 0 is just (f;':(t))'oh(t), where f;'s is the gradient
’ ’ ¢

E,N . €
of the expression for f2' with respect to the argument v (t). The components

of ﬂc'Nf;'N which involve f are bounded by O(¢). Loosely speaking, the

remaining component is of the form

(4.15) o(e) + ch[Ei'Nf g g +E f gg -Ef g g

where we omit the function arguments. By a method similar to that uscd to get

. 2
| (4.13), we get the bound (4.13) on (4.15) but with (e/a) replacing ¢
Part 4. The estimates obtained in Parts 1 - 3 imply that

| p-lim |£5(0)-£(vT (), 0) | = 0O,

F{ €20
‘ a0
p-lim [R5 NS0, v (0,0 -L/2/m ‘S‘t’;G‘Vc‘t’” p'f (v:(t),t)
)
- a8 Ve (vt () ,0 ] = o. é

0

A proof very similar to that in ({5), Section 6, part 2) yieldd" that A;'Nf(v,t) +

J D'fvv(v.t)D(ln 2)/a uniformly in v for each t. 1In calculating the limit, the

.One of the reasons for the choice cov[z(O),z(t)] - azexp -a7 is to allow us to save
a work by using this result. The choice allowed an explicit aevaluation of the diffusion
term. With other choices the diffusion coefficient would be left in an "integral® form.

- - T e - P




G(*), s{(*) play no role and the limit (¢ + O, o + 0) is the same as for the

case {(a = 0, € » 0). 1If the bN(v) terms were retained, the result would be the

same, except that either b or bz would multiply the £ , f or f . By what
N N v vv vvv

has just been said t
@.16)  p-lim |25V N0 - (X + mect (0,0 =0,

fis 5t

a0

where A is the infinitesimal operator of v(-) in (1.2). If bN were retained,
the A in (4.16) would be replaced by some AN which would equal A where bN(') =1,
i.e. in S . Thus, by Theorem 1, if (v ()} were tight, then the proof would

be completed. ]

Tightness. Use ([2], Theorem 2).The conditions of Theorem 2 [2] hold if (4.17)
holds for each N and T < o

(4.17  1im Tim pl{sup|a' e N(w)| > k) = o,

K+ €0 t<T
a+0

lim P{sup If;'N(t)+f;'N(t)| > 6} =0, each 6 > 0.
-0 t<T
a0
But (4.17) follows from (4.10), (4.13) (and a similar estimate for (4.15), and

the fact that the Gaussianness and stationarity imply that ({cr ey ¥ > 7

lim sup cYIz(t/cz)l =0 w.p. 1. Q.E.D.
€+0 t<T
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